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Spectral correlations in the crossover transition from a superposition of harmonic oscillators
to the Gaussian unitary ensemble
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We compute the spectral correlation functions for the transition from a harmonic oscillator towards the
Gaussian unitary ensemble~GUE!. We use a variant of the supersymmetry method to obtain analytical results
in a fast and elegant way. In contrast to certain related transitions, thek-point correlation function possesses the
k3k determinant structure of the GUE limit for the entire transition. The results are used to consider also the
spectral correlations of a superposition ofM transition spectra. Our results are nonperturbative and are valid for
all values of the transition parameter.@S1063-651X~99!01801-2#

PACS number~s!: 05.45.Gg, 05.40.1j
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I. INTRODUCTION

Random matrix theory@1# is a powerful tool for the mod-
eling of spectral fluctuation properties. Due to the gene
symmetry constraints, a time-reversal invariant system w
conserved or broken rotation invariance is modeled by
Gaussian orthogonal or symplectic ensembles, respectiv
while the Gaussian unitary ensemble~GUE! models the fluc-
tuation properties of a system under broken time-reve
invariance. These ensembles are known to describe the
neric fluctuation properties of chaotic quantum systems v
accurately@2–5#. While numerical simulations of the ensu
ing matrix models usually pose no serious difficulties, t
analytical calculations of the observables, i.e., the correla
functions, is generally a nontrivial task. In the case of
pure ensembles, Mehta and Dyson@1# solved the problem
about 30 years ago by introducing the orthogonal polynom
method.

However, since a generic physical system has, classic
a mixed phase space, the spectral fluctuations of the co
sponding quantum system will be in between the pure ca
The transition from preserved to broken time-reversal inv
ance was worked out by Mehta and Pandey@1#. The transi-
tions of the spectral fluctuations in the case of gradually b
ken symmetries, i.e., quantum numbers were compute
Refs. @6# and @7#. Here we will focus on a system that un
dergoes a transition from regular to chaotic fluctuations.
model such a system, we write theN3N random matrix
representing the total Hamiltonian as a sum of a regular
a chaotic part

H~a!5H ~0!1aH ~1!, ~1!

wherea is the dimensionless transition parameter. The m
trices H (1) are drawn from a Gaussian ensemble with
probability density functionPN

(1)(H (1)). Here we are mainly
interested in the transition from a regular, equispaced sp
trum to a chaotic one. This is a very important physical si
ation since many systems, particularly in nuclear and m
lecular physics, can be described as a chaos producing
coupled to a harmonic oscillator. Often it is necessary to g
the regular partH (0) a block structure that reflects the pre
PRE 591063-651X/99/59~1!/330~7!/$15.00
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ence of symmetries. This was already realized by Porter
Rosenzweig@8#, who investigated, experimentally and n
merically, atomic spectra that contain various angular m
menta and spin quantum numbers subject to different c
pling schemes.

However, at the moment, we make no assumptions for
probability distributionPN

(0)(H (0)) of the matricesH (0). The
decomposition~1! can be justified for potential and billiard
systems. Detailed numerical simulations for the transition
the fluctuations can be found in Ref.@9#. However, despite
several attempts, full-fledged analytical discussions co
only recently be performed for the case of broken tim
reversal invariance in which the matricesH (1) are drawn
from the GUE. For a history of the studies devoted to the
problems see Ref.@5#. Presently, there are the followin
techniques that make such calculations possible. Pande@7#
presented a certain construction of the solution of Dyso
Brownian motion model@3#. A related approach was mor
recently put forth by Forrester@10#. A very direct and com-
pact technique for the GUE was constructed in Refs.@11,12#.
It relies on a variant of the supersymmetry method@13,14#
that was introduced in Ref.@15#. The enormous simplifica-
tions are due to the fact that supersymmetry can, loos
speaking, be viewed as the ‘‘irreducible representation’’
random matrix theory, which becomes apparent in a differ
class of diffusion equations@12,5#. Recently, Bre´zin and
Hikami @16# presented a third approach to derive similar
tegral representations.

In this paper we will apply the methods of Refs.@11,12#
to the transition starting from a harmonic oscillator. Pand
@7# gave a formula for the two-level correlation function o
the unfolded scale. Forrester@10# extended the result for the
k-level correlation function. Here we have three goals. Fi
we will show that this result can be obtained very fast in
direct application of the general results of Refs.@11,12#. Sec-
ond, we will present plots and a detailed discussion of
two-level correlation function. Third, we will go beyond th
known results and study a block structure ofH (0) by consid-
ering the superposition ofM transition spectra. After briefly
sketching the method in Sec. II, we work out the crosso
transition from one harmonic oscillator to the GUE in Se
330 ©1999 The American Physical Society
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PRE 59 331SPECTRAL CORRELATIONS IN THE CROSSOVER . . .
III. In Sec. IV we study the superposition ofM spectra. We
summarize our results in Sec. V.

II. TRANSITION ENSEMBLES

Before turning to the harmonic oscillator, we briefly sum
marize the general results. A detailed discussion can
found in Ref.@12#; see also Ref.@17#.

As functions of the transition parametera, we wish to
study thek-level correlation functions

Rk~x1 , . . . ,xk ,a!5
1

pkE d@H ~0!#PN
~0!~H ~0!!E d@H ~1!#PN

~1!

3~H ~1!!)
p51

k

Im tr
1

xp
22H~a!

~2!

depending onk energiesxp , p51, . . . ,k, where the ener-
gies are given imaginary increments such thatxp

65xp6 i«.
It is convenient to work with correlation function
R̂k(x1 , . . . ,xk ,a) that involve the full Green’s functions
including real and imaginary parts. By studying differe
combinations of the signs of the imaginary parts of t
Green’s functions we can construct the physically interes
functions ~2!; see Ref. @12#. The correlation functions
R̂k(x1 , . . . ,xk ,a) may be written as the derivatives

R̂k~x1 , . . . ,xk ,a!5
1

~2p!k

]k

)
p51

k

]Jp

Zk~x1J,a!uJ50 ~3!

of the normalized generating functionsZk(x1J,a). The en-
ergies and the source variables are ordered in the diag
matrices x5 diag(x1 ,x1 , . . . ,xk ,xk) and J5 diag(2J1 ,
1J1 , . . . ,2Jk ,1Jk), respectively. The desired function
Rk(x1 , . . . ,xk ,a) can be derived from the generating fun
tion I Zk , where the symbolI stands for the proper linea
combination@12#. The average over the GUE is done b
means of the standard techniques of the supersymm
method@13,14#, yielding

Zk~x1J,a!5E d@H ~0!#PN
~0!~H ~0!!E d@s#

3expS 2
1

a2
trgs2D detg

21@~x61J2s! ^ 1N

212k^ H ~0!#, ~4!

where detg and trg are the graded determinant and trac
respectively. For other details of the derivation and notati
the reader is referred to Ref.@15#. In Eq. ~4!, s denotes a
2k32k Hermitian supermatrix and 1N and 12k are N3N
and 2k32k unit matrices, respectively.

To proceed, it is in our case advantageous to avoid
saddle point approximation of Refs.@13,14#. We shift the
matrix x1J from the graded determinant to the graded pro
ability density and the supermatrixs is diagonalized accord
ing to s5u21su, where s5 diag(s11,is12, . . . ,sk1 ,isk2).
The volume element can be rewritten asd@s#
e

t

g

nal

try

,
,

e

-

5Bk
2(s)d@s#dm(u) with Bk(s)5det@1/(sp12 isq2)#p,q51, . . . ,k

the Jacobian, here referred to as Berezinian. The nontr
integration over the unitary diagonalizing supergroup with
Haar measuredm(u) is the crucial step and can be pe
formed with the supersymmetric extension@15# of the
Harish-Chandra Itzykson Zuber integral@18#. Collecting ev-
erything we arrive at

Zk~x1J,a!512h~x1J!1
1

Bk~x1J!

3E Gk~s2x2J,a!Zk
~0!~s!Bk~s!d@s#,

~5!

Zk
~0!~x1J!5E d@H0#PN

~0!~H0!

3detg
21@~x61J! ^ 1N212k^ H0#,

where the kernel resulting from the group integration
Gaussian and given by

Gk~s2r ,a!5
1

~pa2!k
expS 2

1

a2
trg~s2r !2D . ~6!

with r 5x1J. The distribution 12h(x1J) in Eq. ~5! en-
sures the normalizationZk(x,a)51 at J50. This distribu-
tion is not important for any of the formulas to follow; se
the discussion in Ref.@12#. The generating functionZk(x
1J,a) satisfies an exact diffusion equation in the curv
space of the eigenvalues of Hermitian supermatrices. H
t5a2/2 is the diffusion time and the generating functio
Zk

(0)(x1J) serves as the initial condition. This diffusion
the supersymmetric analog@12# of Dyson’s Brownian mo-
tion @3#.

The integration overs requires one to take a different typ
of boundary contribution@13,14,19# into account that do no
occur in ordinary analysis. However, in Refs.@15,20# it was
shown that we do not need to worry about them when c
culating correlation functions of the type we are interested
here. Collecting everything, we obtain thek-level correlation
functions

Rk~x1 , . . . ,xk ,a!5
~21!k

pk E Gk~s2x,a!

3I Zk
~0!~s!Bk~s! d@s# ~7!

for nonzeroa. The casea50 is trivial by construction.
As a last step it remains to unfold the correlation fun

tions for large level numberN by removing the dependenc
on the level density. We define new energiesjp5xp /D, p
51, . . . ,k, in units of the mean level spacingD. The tran-
sition parameter has to be unfolded too,l5a/D, and
was introduced by Pandey@21#. The k-level correlation
functions on the unfolded scaleXk(j1 , . . . ,jk ,l)
5 limN→`DkRk(x1 , . . . ,xk ,a) are then generic, i.e., transla
tion invariant over the spectrum. It is useful to unfold th
integration variabless in Eq. ~7! by making the rescalings
→s/D. We arrive at
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Xk~j1 ,..., jk ,l!5
~21!k

pk E Gk~s2j,l!

3I zk
~0!~s!Bk~s!d@s# ~8!

for nonzerol, where the unfolded generating function of th
arbitrary correlations is given by

zk
~0!~s!5 lim

N→`

Zk
~0!~Ds!. ~9!

Hence we have expressed the unfoldedk-level correlation
function for the transition from arbitrary to GUE fluctuation
as a 2k-fold integral.

III. TRANSITION FROM AN EQUISPACED SPECTRUM

All results derived so far are correct for arbitrary initi
correlationsRk

(0)(x1 , . . . ,xk) or Xk
(0)(j1 , . . . ,jk). We now

apply them to the case of an equispaced spectrum. The
monic oscillator probability density function reads

PN
~0!~H ~0!!5 )

n51

N

d~Hnn
~0!2en! )

n.m
d~Re Hnm

~0!!d~ Im Hnm
~0!!,

~10!

where

en5H ~n21!D/21dD, n51,3,5, . . . ,N

2nD/21dD, n52,4,6, . . . ,N21.
~11!

D52A2/N is the mean level spacing and the number of le
els N is odd. The spectrum is shifted byd and we require
udu,1. We find from Eq.~5! for the generating function o
the initial condition

Zk
~0!~s!5 )

p51

k isp2
2d

sp1

6 2d

3 )
n51

~N21!/2 @12 isp2
/~n1d!#@11 isp2

/~n2d!#

@12 isp1

6 /~n1d!#@11 isp1

6 /~n2d!#
.

~12!

According to Eq.~9! we evaluate the generating function o
the unfolded scale in the limitN→` and obtain

zk
~0!~s!5 )

p51

k sinp~ isp2
2d!

sinp~sp1

6 2d!
. ~13!

The signs are determined by the choice of the sign of
imaginary increment in the Green’s function. The correlat
functions can be worked out by using the general result~8!.
The initial condition takes the form

Im zk
~0!~s!5 )

p51

k

sinp~ isp22d! Im
1

sinp~sp1
2 2d!

. ~14!

We use the identity
ar-

-

e
n

Im
1

sinp~s22d!
5 (

k52`

`

~21!kd~s2k2d! ~15!

and insert Eqs.~6! and ~14! into Eq. ~8!. Since the function
Bk(s) is a determinant and since the generating function
the harmonic oscillator spectrum~14! and the Gaussian ker
nel ~6! are products of 2k factors, thek-point spectral corre-
lation function may be written as a determinant@15#

Xk~j1 , . . . ,jk ,l!5det@C~jp ,jq ,l!#p,q51, . . . ,k , ~16!

with

C~jp ,jq ,l!52
1

p2l2E2`

1`E
2`

1` dsp1dsq2

sp12 isq2

3expS 1

l2
@~ isq22jq!22~sp12jp!2# D

3sinp~ isq22d! (
l 52`

1`

~21! l

3d~sp12 l 2d!

5
1

p2l2 (
l 52`

1`

~21! l expS 2
~jp2d2 l !2

l2 D
3E

2`

1`

dsq2

sinp~ isq22d!

sq21 i ~ l 1d!

3expS 2
~sq21 i jq!2

l2 D . ~17!

The remaining integration may be done as follows. First,
translate the path of integration about1 id that does not
change the value of the integral. Then we write the deno
nator of the integrand as a Laplace transform and perform
integrations by means of@22#

E
2`

`

ds
sinhps

s1 i l
expS 2

~s1 i ~j2d!!2

l2 D
52p~21! lexpS ~j2d2 l !2

l2 D
3Im erfS l 2~j2d!

l
sgn~ l !2 i

p

2
l D . ~18!

This yields (erf denotes the error function as defined in R
@22#!
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C~jp ,jq ,l!52
1

pl2
expS 2

~jp2d!22~jq2d!2

l2 D
3 (

l 52`

`

expS 2
2

l2
~jq2jp!l D

3Im erfS l 2~jq2d!

l
sgn~ l !2 i

p

2
l D .

~19!

To proceed, we use the definition of the error function a
write it as the integral of a Gaussian. Taking its imagina
part and writing the just introduced Gaussian as a Fou
transform yields

C~jp ,jq ,l!5
1

4pE21

1

dt expS p2l2t2

4 D
3E

2`

`

dsexpS 2
l2s2

4 D
3 (

l 52`

`

cos@p~jq2d2 l !t#

3cos@~jp2d2 l !s#. ~20!

We use Poisson’s sum formula and perform the remain
integrations. The final result displaysC(jp ,jq ,l) as a Fou-
rier series

C~jp ,jq ,l!

5 (
l 52`

`

exp~2p2l2l 2!ReS exp@ i2p l ~jp2d!#

3
sinh@p2l2l 1 ip~jq2jp!#

p2l2l 1 ip~jq2jp!
D , ~21!

which inserted in Eq.~16! completes our calculation. Two
interesting limits may be considered. In the limit of vanis
ing transition parameter one obtains

lim
l→0

C~jp ,jq ,l!5
sinp~jq2jp!

p~jq2jp! (
l 52`

`

d~jp2d2 l !,

~22!

which generates the spectral correlations of the harmonic
cillator. The opposite limit of infinite transition paramet
yields the GUE spectral correlations, i.e.,

lim
l→`

C~jp ,jq ,l!5
sinp~jp2jq!

p~jp2jq!
. ~23!

Plots of the level density
d
y
er

g

-

s-

X1~j,l!5C~j,j,l!

5 (
l 52`

`

exp~2p2l2l 2!
sinhp2l2l

p2l2l

3cos2p l ~j2d! ~24!

are shown for different values of the transition parametel
in Fig. 1. Note that very small values of the transition p
rameterl already cause a considerable broadening of thd
peaks of the original harmonic oscillator spectrum. It h
been observed in almost all crossover transitions that,
scales of a few mean level spacings, the GUE limit
reached whenl is of the order of unity; see the review i
Ref. @5#. Figures 2 and 3 show that this is also true for t
two-point function

FIG. 1. Level densityX1(j,l) for different values of the tran-
sition parameterl.

FIG. 2. Contour plot ofX2(j1 ,j2 ,l50.25).
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X2~j1 ,j2 ,l!5X1~j1 ,l!X1~j2 ,l!

2C~j1 ,j2 ,l!C~j2 ,j1 ,l!. ~25!

The d peaks at integer valuesj1Þj2 are broadened for a
small value of the transition parameterl and the GUE cor-
relations are approached fast. Note also that the two-p
function ~25! becomes translationally invariant~i.e., it de-
pends only on the distancej12j2) if averaging overd is
done@10#.

IV. SUPERPOSITION OF SPECTRA

We now consider a superposition of independent, non
teracting spectra as the initial condition. This is equivalen
saying that there is a symmetry that allows one to write
initial condition in the form H (0)5diag(H1

(0) , . . . ,HM
(0)),

where each of theNm3Nm matricesHm
(0) ,m51, . . . ,M , is

drawn from an independent ensemble. We have(m51
M Nm

5N, the total dimension, and(m51
M Dm

215D21, whereDm

is the mean level spacing in themth ensemble. The quantitie
gm5D/Dm are referred to as fractional level densities. If
Nm are equal, we havegm51/M . Symmetries that lead to
such models are frequently found in nuclear, atomic, a
molecular physics@8,5#.

For given fluctuations of every subensemble with ind
m, the fluctuations properties of the superposition can
worked out in a rather straightforward way. In the case of
nearest neighbor spacing distribution, the result is given
the article by Porter and Rosenzweig@8#. More general dis-
cussion may be found in Ref.@1# and in the review@5#.

Here we address the case that all matricesHm
(0) are drawn

from harmonic oscillators. In discussing the influence o
chaotic admixture on this initial condition, two different sc
narios are of interest: The chaotic admixture can either p
serve the symmetry or break it. In the first scenario, we h
to add a GUE matrix toevery matrix Hm

(0) . Thus we still
have a superposition of independent spectra and the

FIG. 3. Contour plot ofX2(j1 ,j2 ,l51.0).
nt

-
o
e

l

d

x
e
e
in

a

e-
e

tal

matrix H(a) still has the block structure, i.e.,H(a)
5 diag@H1(a), . . . ,HM(a)#.

In the second scenario, we add oneN3N GUE matrix to
the block diagonal matrixH (0). Thus, for a nonzero transi
tion parameter, the total matrixH(a) has no block structure
This scenario is in the spirit of the Porter-Rosenzweig mo
@8#. For M52 such a symmetry breaking was investigated
Refs.@6# and @7#. In these studies, however, and in contra
to the present one, the initial condition was also chaotic.
discuss the first scenario in Sec. IV A, before we briefly tu
to the second one in Sec. IV B.

A. Symmetry preserving case

Each of the block matrices is a harmonic oscillato
coupled to a GUE. For simplicity, we assume that all bloc
matrices shall have the same dimensionNm and the same
coupling to the GUE. Moreover, to lift the degeneracies,
mth oscillator spectrum is chosen with an energy shiftdm
5m/M @cf. Eq. ~11!#. We are interested in the unfolded two
point correlation function

X2
~M !~j1 ,j2 ,l!5 (

m51

M

gm
2 X2,m~gmj1 ,gmj2 ,gml!

1 (
n,m51

M

gmgnX1,m~gmj1 ,gml!

3X1,n~gnj2 ,gnl!2 (
m51

M

gm
2

3X1,m~gmj1 ,gml!X1,m~gmj2 ,gml!,

~26!

where gm51/M is the fractional density of each bloc
matrix. To motivate this equation, we notice th
X2

(M )(j1 ,j2 ,l) is the probability density of finding a level a
j1 and another one atj2 . The levels can belong either to th
same symmetry sector@first line of Eq. ~26!# or to different
symmetry sectors@second and third lines of Eq.~26!#. Since
the second line also includes correlations within one symm
try sector~these have been accounted for in the first line!, the
third line must be subtracted. We emphasize once more
the functionsX1,m(gmj1 ,gml) are not unity in the case of a
harmonic oscillator.

We now insert the two-point function~25! with the appro-
priate energy shifts into Eq.~26! and interchange the sum
mation overm with the summation overk,l . For M.1, this
yields expressions such as

(
m51

M

cos 2p
k

M
~j12m! cos 2p

l

M
~j22m!

5
M

2
~dk,l1dk,2 l !cos 2p

k

M
~j12j2!, ~27!

which help to perform one more summation. The final res
reads forM.1
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X2
~M !~j1 ,j2 ,l!

512
1

M (
k52`

` Usinh@p2l2k/M21 ip~j12j2!/M #

p2l2k/M21 ip~j12j2!/M
U2

3expS 22p2l2
k2

M2D cos2p
k

M
~j12j2!. ~28!

In the limit of vanishingl we find

lim
l→0

X2
~M !~j1 ,j2 ,l!512d~j12j2! ~29!

and in the limit of infinite transition parameter we recov
the two-point correlation function for a superposition ofM
GUE’s

lim
l→`

X2
~M !~j1 ,j2 ,l!512

1

M S sinp~j12j2!/M

p~j12j2!/M D 2

. ~30!

For largeM and nonzero transition parameterl, the two-
point correlation function approaches the value one. Thus
spectrum becomes completely uncorrelated and exhibits
same correlations as the~randomly generated! Poisson spec-
trum. We also note that the two-point correlation functi
~28! depends only on the difference (j12j2) of its argu-
ments. This translation invariance results from the assu
tion that themth spectrum is shifted bym/M mean level
spacings. Thus any deviation from translation invarian
gives a hint to clustering or degeneracy of levels belong
to different symmetry sectors. Figure 4 shows the plot
M @12X2

(M )(j1 ,j2 ,l)# for various values of the couplingl.
This function depends only on the ratiosl/M and (j1
2j2)/M .

FIG. 4. Plot of M @12X2
(M )(j1 ,j2 ,l)# for different values of

the transition parameterl.
e
he

p-

e
g
f

B. Symmetry breaking case

We turn to the second scenario defined above. We do
briefly because we mainly want to show the very differe
structure of the result. In general, the initial condition on t
original scale takes the form

Zk
~0!~s!5 )

m51

M

Zkm
~0!~s!, ~31!

where the initial conditionsZkm
(0)(s) are still completely arbi-

trary. On the unfolded scale, we have

zk
~0!~s!5 )

m51

M

zkm
~0!~gms!. ~32!

These formulas have to be inserted into Eqs.~7! and ~8!,
respectively, to obtain the correlation functions.

If all M initial ensembles are chosen as harmonic osci
tors, we find from Eq.~13! on the unfolded scale

zk
~0!~s!5 )

m51

M

)
p51

k sinp~gmisp2
2dm!

sinp~gmsp1

6 2dm!
. ~33!

Since this is still a product, the determinant structure~16! of
the k-point correlation functions is still preserved. The fun
tions

C~jp ,jq ,l!52
1

p2l2E2`

1`E
2`

1` dsp1dsq2

sp12 isq2

3expS 1

l2
@~ isq22jq!22~sp12jp!2# D

3 )
m51

M

sinp~gmisq22dm!

3Im )
m851

M
1

sinp~gm8sq1
2 2dm8!

~34!

are the entries of this determinant. For generalgm and dm ,
this result is not easily amenable to simplifications. In so
special cases, however, the product overm in Eq. ~33! can be
performed. In particular, forgm51/M anddm5m/M we ob-
tain

zk
~0!~s!5 )

p51

k sinp isp2

sinpsp1

6
~35!

by using standard results for trigonometric functions. This
precisely Eq.~13! for d50. Thus we recover the results o
Sec. III because the case discussed here corresponds t
coupling of one oscillator, with the spacing on the origin
scale multiplied by 1/M , to one GUE matrix.

V. SUMMARY

We have computed all spectral correlation functions
the transition from a harmonic oscillator to the GUE. W
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have used these results to compute the two-point correla
function for a system that undergoes a crossover transitio
a GUE starting from a superposition of independent osci
tor spectra. We discussed chaotic admixtures to an in
block structure that either preserve or break this symme
These ideas and techniques can also be used for other b
diagonal initial conditions with different individual statistic
cs
on
to
-

al
y.
ck

Applying a variant of the supersymmetry technique, we ga
an elegant and very straightforward derivation of these
sults.

ACKNOWLEDGMENT

T.G. acknowledges the support of the Heisenberg Fo
dation.
@1# M.L. Mehta, Random Matrices, 2nd ed. ~Academic, New
York, 1991!.

@2# O. Bohigas, inChaos and Quantum Physics, edited by M.-J.
Giannoniet al. ~North-Holland, Amsterdam, 1991!.

@3# F. Haake,Quantum Signatures of Chaos~Springer, Berlin,
1991!.

@4# M.C. Gutzwiller,Chaos in Classical and Quantum Mechani
~Springer, New York, 1990!.

@5# T. Guhr, A. Müller-Groeling, and H.A. Weidenmu¨ller, Phys.
Rep.299, 189 ~1998!.

@6# T. Guhr and H.A. Weidenmu¨ller, Ann. Phys.~N.Y.! 199, 412
~1990!.

@7# A. Pandey, Chaos Solitons Fractals5, 1275~1995!.
@8# C. E. Porter and N. Rosenzweig, Phys. Rev.120, 1698~1960!.
@9# T. Guhr and H.A. Weidenmu¨ller, Ann. Phys.~N.Y.! 193, 472

~1989!.
@10# P.J. Forrester, Physica A223, 365 ~1996!.
@11# T. Guhr, Phys. Rev. Lett.76, 2258~1996!.
@12# T. Guhr, Ann. Phys.~N.Y.! 250, 145 ~1996!.
@13# K.B. Efetov, Adv. Phys.32, 53 ~1983!.
@14# J.J.M. Verbaarschot, H.A. Weidenmu¨ller, and M.R. Zirnbauer,

Phys. Rep.129, 367 ~1985!.
@15# T. Guhr, J. Math. Phys.32, 336 ~1991!.
@16# E. Brézin and S. Hikami, Nucl. Phys. B479, 697~1996!; Phys.

Rev. E56, 264 ~1997!.
@17# T. Guhr and A. Mu¨ller-Groeling, J. Math. Phys.38, 1870

~1997!.
@18# Harish-Chandra, Am. J. Math.80, 241~1958!; C. Itzykson and

J.B. Zuber, J. Math. Phys.21, 411 ~1980!.
@19# M.J. Rothstein, Trans. Am. Math. Soc.299, 387 ~1987!.
@20# T. Guhr, Nucl. Phys. A560, 223 ~1993!.
@21# A. Pandey, Ann. Phys.~N.Y.! 134, 110 ~1981!.
@22# I.S. Gradshteyn and I.M. Ryzhik,Table of Integrals, Series

and Products~Academic, San Diego, 1980!, formula 3.897.


