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We compute the spectral correlation functions for the transition from a harmonic oscillator towards the
Gaussian unitary ensemhbléUE). We use a variant of the supersymmetry method to obtain analytical results
in a fast and elegant way. In contrast to certain related transitionk;pbat correlation function possesses the
kX k determinant structure of the GUE limit for the entire transition. The results are used to consider also the
spectral correlations of a superposition\btransition spectra. Our results are nonperturbative and are valid for
all values of the transition parametg81063-651X99)01801-2

PACS numbds): 05.45.Gg, 05.40:]

I. INTRODUCTION ence of symmetries. This was already realized by Porter and
Rosenzweig 8], who investigated, experimentally and nu-
Random matrix theory1] is a powerful tool for the mod- merically, atomic spectra that contain various angular mo-
eling of spectral fluctuation properties. Due to the generamenta and spin quantum numbers subject to different cou-
symmetry constraints, a time-reversal invariant system wittpling schemes.
conserved or broken rotation invariance is modeled by the However, at the moment, we make no assumptions for the
Gaussian orthogonal or symplectic ensembles, respectivelyyopapility distributionP(O(H(®) of the matricedH(®. The
while the Gaussian unitary ensemb®UE) models the fluc-  o0omposition(1) can be justified for potential and billiard
tuation properties of a system under broken tmg-reversaiystems_ Detailed numerical simulations for the transition of
invariance. These ensembles are known to describe the 985e fluctuations can be found in Ré8]. However, despite

neric fluctuation properties of chaotic quantum systems very ! . .

) . . . everal attempts, full-fledged analytical discussions could
accurately{2—5]. While numerical simulations of the ensu- onlv recently be performed for the case of broken time-
ing matrix models usually pose no serious difficulties, the y y P

analytical calculations of the observables, i.e., the correlatiof€Versal invariance in which the mat”?d’él) are drawn
functions, is generally a nontrivial task. In the case of thellom the GUE. For a history of the studies devoted to these
pure ensembles, Mehta and Dysfi solved the problem problgms see Refl5]. Presently, th_ere are t_he following
about 30 years ago by introducing the orthogonal polynomiatechniques that make such calculations possible. Pafiey
method. presented a certain construction of the solution of Dyson’s
However, since a generic physical system has, classicalljgrownian motion mode[3]. A related approach was more
a mixed phase space, the spectral fluctuations of the corrgecently put forth by Forrest¢d0]. A very direct and com-
sponding quantum system will be in between the pure casepact technique for the GUE was constructed in Rfgif$,12.
The transition from preserved to broken time-reversal invarilt relies on a variant of the supersymmetry metli@8,14
ance was worked out by Mehta and Panfigly The transi- that was introduced in Refl15]. The enormous simplifica-
tions of the spectral fluctuations in the case of gradually brotions are due to the fact that supersymmetry can, loosely
ken symmetries, i.e., quantum numbers were computed iBpeaking, be viewed as the “irreducible representation” of
Refs.[6] and[7]. Here we will focus on a system that un- random matrix theory, which becomes apparent in a different
dergoes a transition from regular to chaotic fluctuations. Teclass of diffusion equation§12,5. Recently, Brein and
model such a system, we write tiéXN random matrix ~Hikami [16] presented a third approach to derive similar in-

representing the total Hamiltonian as a sum of a regular antégral representations.
a chaotic part In this paper we will apply the methods of Ref41,17]

to the transition starting from a harmonic oscillator. Pandey
H(a)=HO+aHD, (1)  [7] gave a formula for the two-level correlation function on

the unfolded scale. ForrestglrO] extended the result for the
wherea is the dimensionless transition parameter. The mak-level correlation function. Here we have three goals. First,
trices H® are drawn from a Gaussian ensemble with thewe will show that this result can be obtained very fast in a
probability density functiorPf\ll)(H(l)). Here we are mainly direct application of the general results of Réfksl,12). Sec-
interested in the transition from a regular, equispaced spe@nd, we will present plots and a detailed discussion of the
trum to a chaotic one. This is a very important physical situ-two-level correlation function. Third, we will go beyond the
ation since many systems, particularly in nuclear and moknown results and study a block structuretf) by consid-
lecular physics, can be described as a chaos producing pating the superposition d¥l transition spectra. After briefly
coupled to a harmonic oscillator. Often it is necessary to givesketching the method in Sec. Il, we work out the crossover
the regular parti(%) a block structure that reflects the pres- transition from one harmonic oscillator to the GUE in Sec.
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ll. In Se_c. IV we study_the superposition M spectra. We zgi(s)d[s]dﬂ(u) with By(s)=def1/(Sp1—iSq2) Ip.q=1, .. &
summarize our results in Sec. V. the Jacobian, here referred to as Berezinian. The nontrivial
integration over the unitary diagonalizing supergroup with its
Il. TRANSITION ENSEMBLES Haar measurelu(u) is the crucial step and can be per-
formed with the supersymmetric extensigd5] of the

Before turning to the harmonic oscillator, we briefly sum- ) X :
g y Hlarish-Chandra ltzykson Zuber integfdB]. Collecting ev-

marize the general results. A detailed discussion can b

found in Ref.[12]; see also Refl17]. erything we arrive at
As functions of the transition parameter, we wish to
study thek-level correlation functions Z(x+J,0)=1— p(x+J)+

Bk(X+J)

1
Ri(X1, ...,Xk,a)=;f d[H<°>]P§§’>(H<0>)Jd[H<1>]P§j> XJGk(s—X—J,a)Z,((O)(s)Bk(s)d[s],

K (5)

X(HTT Imtr—1 ) (0) (0)
p=1 X, —H(a) Zi'(x+J)= | d[Ho]Py"(Ho)

depending ork energiesx,, p=1,... k, where the ener- Xdegl[(X:+J)®1N—12k® Hol,

gies are given imaginary increments such tk\étz Xp*ie. _ _ o

It is convenient to work with correlation functions Where the kernel resulting from the group integration is

Re(X1, . .. X, @) that involve the full Green's functions, Gaussian and given by

including real and imaginary parts. By studying different

combinations of the signs of the imaginary parts of the B 1 _i N2
Green'’s functions we can construct the physically interesting Gls—r.a)= (Tmz)kex a2tr9(s 07 ®)

functions (2); see Ref.[12]. The correlation functions

Re(X1, . . . X¢,a) may be written as the derivatives with r=x+J. The distribution + 7(x+J) in Eqg. (5) en-

; sures the normalizatiod,(x,a)=1 at J=0. This distribu-

. 1 tion is not important for any of the formulas to follow; see
Ri(Xq, ... 'Xk’a)_(zﬂ_)k K Zdxtd,a)l50 B the discussion in Reff12]. The generating functio,(x
H adp +J,a) satisfies an exact diffusion equation in the curved
p=1

space of the eigenvalues of Hermitian supermatrices. Here
t=a?/2 is the diffusion time and the generating function

)(x+J) serves as the initial condition. This diffusion is
the supersymmetric analdd2] of Dyson’s Brownian mo-

of the normalized generating functiodg(x+J,a). The en-
ergies and the source variables are ordered in the diagon

matrices x= diag(X;,Xq, - . - X¢,X,) and J= diag(—Jq, tion [3
+Jq,...,—J,+Jy), respectively. The desired functions |or_1”[1 ]'. ¢ i . o take a diff ¢
Re(Xq, ... X, a) can be derived from the generating func- € integration oves requires one o take a diferent type

of boundary contributiof13,14,19 into account that do not
occur in ordinary analysis. However, in Ref45,2( it was
own that we do not need to worry about them when cal-
ulating correlation functions of the type we are interested in
here. Collecting everything, we obtain tkdevel correlation
functions

tion 3 Z,, where the symboli stands for the proper linear
combination[12]. The average over the GUE is done by
means of the standard techniques of the supersymmet
method[13,14), yielding

zk(x+J,a)=f d[H<0>]P§$>(H<°>)J dlo]
— 1)k
1 R(Xq, ... ,xk,a)z%f Gy(s—Xx,a)
xexp( ——Ztrgaz) degl[(xi+J—a)®1N 7
“ x3Z0(s)By(s)d[s] (7
—1®HO], (4)
for nonzeroa. The casex=0 is trivial by construction.
where dgf and ty are the graded determinant and trace, As a last step it remains to unfold the correlation func-
respectively. For other details of the derivation and notationtions for large level numbeN by removing the dependence
the reader is referred to Rgfl5]. In Eq. (4), o denotes a on the level density. We define new energigs-x,/D, p
2kx 2k Hermitian supermatrix andland 1L, are NXN =1,... kK, in units of the mean level spacirig. The tran-
and XX 2k unit matrices, respectively. sition parameter has to be unfolded tod=«/D, and
To proceed, it is in our case advantageous to avoid th&as introduced by Pandef21]. The k-level correlation
saddle point approximation of Reffl3,14. We shift the functions on the unfolded scaleX, (&4, ... .&.\)

matrix x+J from the graded determinant to the graded prob-=limy_,,D*Ry(X1, . .. Xy, a) are then generic, i.e., transla-
ability density and the supermatrixis diagonalized accord- tion invariant over the spectrum. It is useful to unfold the
ing to o=u"'su, where s= diag(s;1,iS1s, - - . \Sk1,iSk2)- integration variables in Eq. (7) by making the rescaling

The volume element can be rewritten ad[o] —s/D. We arrive at
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_(—D)k 1 -
Xi(€1ens §k-7\)—7j Gi(s— &) Im———— = >, (—1)*8(s—k—5) (15

sinm(s™ —6) k=-=
X3 2 (s)By(s)d[s] )

for nonzero, where the unfolded generating function of the @nd insert Eqs(6) and(14) into Eq. (8). Since the function

arbitrary correlations is given by By(s) is a determinant and since the generating function of
the harmonic oscillator spectru(i4) and the Gaussian ker-
729(s)= lim Z9(Ds). (9)  nel(6) are products of R factors, thek-point spectral corre-
N—e lation function may be written as a determinghb]

Hence we have expressed the unfoldelgvel correlation
function for the transition from arbitrary to GUE fluctuations _

X , N)=defC WA 16
as a Xx-fold integral. k(fl gk ) ( (fp gq )]pq 1,...] ( )

lll. TRANSITION FROM AN EQUISPACED SPECTRUM with
All results derived so far are correct for arbitrary initial
correlationsR{?(xy, ... x) or XO(¢&;, ... ,&). We now
apply them to the case of an equispaced spectrum. The har- c N)= — +edsydsg,
monic oscillator probability density function reads (£p.6q.M) = 72\2) o ) e Sp1—iSg2
N
1
P<No>(|-|<o>):n[=[1 S(HO — en)n];[m S(ReH) 8(Im H{Y), xexp(F[(isqz—éq)z—(spl—gp)z])
(10)
+ 00
where Xsinm(isge—8) > (—1)'
|=—o
(n—1)D/2+6D, n=135... N X 8(Su1—1— )
“=| _nD2+ oD, n=24,6...N-1. D Pt
. . | (gp_ 5_ | )2
D=2+2/N is the mean level spacing and the number of lev- 22 2 (=1'exp —————
els N is odd. The spectrum is shifted hy and we require A= A
|6|<.1...We flnq from Eq.(5) for the generating function of sinm(isqe— )
the initial condition qu
Sq2Ti(1+9)
K is, — 6 .
P2 2
K (S) pl;[l 351_5 Xexp( N ) (17

(N-D2[1—is, /(n+8)][1+is,,/(n—6)]

n=1 [1—is§ll(n+ 5)][1+is§1/(n— 5] ’ The remaining integration may be done as follows. First, we
translate the path of integration abotiti 5 that does not
(12) change the value of the integral. Then we write the denomi-
nator of the integrand as a Laplace transform and perform the
integrations by means ¢22]

According to Eq.(9) we evaluate the generating function on
the unfolded scale in the limK—c and obtain

K sinm(is, — 8)

20(s)=1] ————. (13 f g sinhwsexp(_(sH(s—&))Z)

s -
% s+il

p=1 smqr(sgl—é) N2
The signs are determined by the choice of the sign of the | (6—6—1)?
imaginary increment in the Green'’s function. The correlation =-m(—-1)ex \2
functions can be worked out by using the general re@)lt
The initial condition takes the form |—(&—90) T
X Im erf —sgr(l)—iE)\ . (18
k
1
Im 22 (s)=[1] sinm(isy,— &) Im————. (14
p=1 sinm(sp; — 6)

This yields (erf denotes the error function as defined in Ref.
We use the identity [22))
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_52 20
C(£&p.éq N)=— p( fq )> 8l
16}
2

>< eX[{——z ) 14
12

=) =2
xlmerf( sgr(l)—|— ) w10

3

(19

To proceed, we use the definition of the error function and
write it as the integral of a Gaussian. Taking its imaginary
part and writing the just introduced Gaussian as a Fourier
transform yields

0.0 02 04 06 08 10 12 1.4 1.6 1.8 2.0

111 w2\2t2
C(gp ,fq ’)\):Ejldteﬂ{ ) FIG. 1. Level densityX,(&,\) for different values of the tran-
sition parametek.
A2s?
f el )
X1(§,7\)=C(§,§,)\)
- inh?\2|
X|:Z—oo cog m(§q— 6— D] =|:2_w exp(—wz)\zlz)SIr;T
X cog (ép—6—1)s]. (20 X cos2ml (£~ &) (24)

We use Poisson’s sum formula and perform the remainin

integrations. The final result displag(£, ,£,.\) as a Fou- e shown for different values of the transition paramater

in Fig. 1. Note that very small values of the transition pa-

fler series rameter\ already cause a considerable broadening of&he
peaks of the original harmonic oscillator spectrum. It has
C(&p,éq:0N) been observed in almost all crossover transitions that, on
o scales of a few mean level spacings, the GUE limit is
_ 2y 2|2 ; reached when is of the order of unity; see the review in
= exp — 7N 1°)Re exdi2wl(&é,— S . A
|=§;x A= ) e( Hi2ml (&= 9)] Ref. [5]. Figures 2 and 3 show that this is also true for the

two-point function

. N _
XSII’]|”[7T Nl +im(€ fp)]) (21

TN+ m( fq_ fp) X2(§1a€2’)‘_ 0. 25)

0.565608
113122
1.69682
226243
2.82804
3.39365
3.95926
4.52486
5.09047
5.65608

which inserted in Eq(16) completes our calculation. Two
interesting limits may be considered. In the limit of vanish-
ing transition parameter one obtains

W= Zmaommua®

: _ fq fp _
(22

which generates the spectral correlations of the harmonic os
cillator. The opposite limit of infinite transition parameter
yields the GUE spectral correlations, i.e.,

. Sinﬂ'(gp_gq)
| = 2 h 5
ATLC(S"’S“"‘) m(€p—&q) @3 00 02 04 06 08 1§0 12 14 16 18 20
1

Plots of the level density FIG. 2. Contour plot ofX,(¢&;,&,,A=0.25).
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XH(&1,6:,A=1.0) matrix H(a) still has the block structure, i.eH(a)
@ - ! — = diadH (), ... Hu(a)].
¢ oz In the second scenario, we add dd& N GUE matrix to
! e o the block diagonal matrifd(®). Thus, for a nonzero transi-
o o tion parameter, the total matrkt(«) has no block structure.
1 This scenario is in the spirit of the Porter-Rosenzweig model
j ;o [8]. ForM =2 such a symmetry breaking was investigated in

Refs.[6] and[7]. In these studies, however, and in contrast
to the present one, the initial condition was also chaotic. We
WG10 discuss the first scenario in Sec. IV A, before we briefly turn
to the second one in Sec. IV B.

A. Symmetry preserving case

Each of the block matrices is a harmonic oscillator,
coupled to a GUE. For simplicity, we assume that all blocks
matrices shall have the same dimensMp and the same
coupling to the GUE. Moreover, to lift the degeneracies, the
mth oscillator spectrum is chosen with an energy shift

: [

10 12 14 16 18 20

0.0 B~ DHAF-AH
00 02 04 06 08

& =m/M [cf. Eqg.(11)]. We are interested in the unfolded two-
FIG. 3. Contour plot ofX,(&;,&,,A=1.0). point correlation function
M
Xo(&1,€2,0)=X1(£1,M) X1 (€2,0) X(ZM)(él,fz,A)=mE:1 ImX2m(Imé1,Imé2,GmM)
—C(£1.62,M)C(&2.61,0). (29 "
The & peaks at integer value, # £, are broadened for a +n’;:1 ImInX1m(Imé 1, Gmh )
small value of the transition parameterand the GUE cor-
relations are approached fast. Note also that the two-point M )
function (25) becomes translationally invariafite., it de- xxl,n(gnfbgn)\)_rgl Om
pends only on the distancg — &,) if averaging overs is
done[10]. X X1 m(Imé1,9mM) X1 m(Imé2.9mM ),

(26)
IV. SUPERPOSITION OF SPECTRA

We now consider a superposition of independent, noninwhere g,,=1/M is the fractional density of each block
teracting spectra as the initial condition. This is equivalent tonatrix. To motivate this equation, we notice that
saying that there is a symmetry that allows one to write th@((z’\")(gl,gz,)\) is the probability density of finding a level at
initial condition in the form H(O)zdiag(H(lo), ... H f\fl’)), &, and another one &b, . The levels can belong either to the
where each of thé,, X N, matricesH¥), m=1,... M, is same symmetry sectffirst line of Eq.(26)] or to different
drawn from an independent ensemble. We haj ,N,,  Symmetry sgctorésec_ond and third lines of EQ?G)]. Since
—N, the total dimension, an8¥_,D- =D, whereD,, the second line also includes correlatlonslwnhm one symme-
is the mean level spacing in theth ensemble. The quantities Y Sector(these have been accounted for in the firsplitiee
gm=D/D,, are referred to as fractional level densities. If all third liné must be subtracted. We emphasize once more that
N, are equal, we havg,=1/M. Symmetries that lead to € functionsXy ,(gmé;,gmh) are not unity in the case of a

such models are frequently found in nuclear, atomic, and'@menic oscillator. _ _ ,
molecular physic$8 5](_1 y We now insert the two-point functiof25) with the appro-

For given fluctuations of every subensemble with indexPriate energy shifts into Eq26) and interchange the sum-
m, the fluctuations properties of the superposition can b&nation ovemwith the summation ovek,|. ForM=>1, this
worked out in a rather straightforward way. In the case of the/i€lds expressions such as
nearest neighbor spacing distribution, the result is given in
the article by Porter and Rosenzwé¢Rj. More general dis- M K |
cussion may be found in Refl] and in the review5]. > cos 277M(§1— m) cos 2’7Tm(§2—m)

Here we address the case that all matridé® are drawn m=1
from harmonic oscillators. In discussing the influence of a M k
chaotic admixture on this initial condition, two different sce- Z?(ékJ + &k —1)COos ZWM(fl_ &), 27)
narios are of interest: The chaotic admixture can either pre-
serve the symmetry or break it. In the first scenario, we have
to add a GUE matrix teevery matrix Hﬁ]?). Thus we still  which help to perform one more summation. The final result
have a superposition of independent spectra and the totatads forM >1
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2.0 - - . : : . B. Symmetry breaking case
— WMM=025 ) i .
-------- AM = 0.36 We turn to the second scenario defined above. We do this
— i’Mf?'Sg briefly because we mainly want to show the very different
M= structure of the result. In general, the initial condition on the

original scale takes the form
M
z2(s)=11 z(s), (3D)
m=1

where the initial conditionZ{%)(s) are still completely arbi-
trary. On the unfolded scale, we have

MI1-X,™(¢,6,, 0]

M
z<k°><s>=rg1 ZI(gms)- (32

00 02 04 06 08 10 12 14 16 18 20 These formulas have to be inserted into EG.and (8),
&-&M respectively, to obtain the correlation functions.
If all M initial ensembles are chosen as harmonic oscilla-
FIG. 4. Plot of M[1-X{(¢&;,&,,M)] for different values of  tors, we find from Eq(13) on the unfolded scale
the transition parametex.
sinw(gmispz— Sm)

M
(0)(g) =
XM (£, ,6,,0) 2c(9) r’rl_:ll pl;[l sinﬂ-(gmsgl—ém) ' %9

. 2\ 2 2 . _ 2
ot sint{ 7"\ “k/M"+im (£, 52)/'\”‘ Since this is still a product, the determinant struct{1® of
M= m2N2KIM2+i(€— E5)IM ‘ the k-point correlation functions is still preserved. The func-
tions
s k2 Kk
Xexp —2m°\ W COSZWM(§1_§2)- (28 +°°d3p1d3q2

1 (s
SO W
(gp gq ) 772)\2 —% J—o Spl_lsq2

In the limit of vanishingk we find 1
Xex F[(lsqz_gq)z_(spl_gp)z]

lim XMW (&1,6,,0)=1—8(&,— &) (29) M

A0 X [ sinm(gmisqe— &m)
m=1
and in the limit of infinite transition parameter we recover M 1
the two-point correlation function for a superposition Mf XIm H : — (34
GUE'’s m =1 S|n’7T(gmqu1_5mr)
are the entries of this determinant. For gengraland é,,,
_ " 1(sinm(&—&,)IM\ 2 this result is not easily amenable to simplifications. In some
lim X3 (&;,€, M) =1— M(——/ . (30)  special cases, however, the product aven Eq. (33) can be
N m(&1— €)M ; _ _ _
performed. In particular, fog,,=1/M andé,=m/M we ob
tain
For largeM and nonzero transition parameter the two- Koo
. . : sinmis
point correlation function approaches the value one. Thus the 29(s)= H P2 (35)
spectrum becomes completely uncorrelated and exhibits the K p=1 Sinﬂss
1

same correlations as tlieandomly generatedPoisson spec-

trum. We also note that the two-point correlation functionpy ysing standard results for trigonometric functions. This is
(28) depends only on the difference;(—&,) of its argu-  precisely Eq(13) for §=0. Thus we recover the results of
ments. This translation invariance results from the assumpsgc. |11 because the case discussed here corresponds to the
tion that themth spectrum is shifted byn/M mean level  cqupling of one oscillator, with the spacing on the original

spacings. Thus any deviation from translation invariance;.gje multiplied by M, to one GUE matrix.
gives a hint to clustering or degeneracy of levels belonging

to different symmetry sectors. Figure 4 shows the plot of
M[1—XM(£,,£,,)\)] for various values of the coupling.

This function depends only on the ratiodM and (&, We have computed all spectral correlation functions for
—&5)IM. the transition from a harmonic oscillator to the GUE. We

V. SUMMARY
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have used these results to compute the two-point correlatioApplying a variant of the supersymmetry technique, we gave
function for a system that undergoes a crossover transition tan elegant and very straightforward derivation of these re-
a GUE starting from a superposition of independent oscillasults.

tor spectra. We discussed chaotic admixtures to an initial

block structure that either preserve or break this symmetry. ACKNOWLEDGMENT
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